TIME-REVERSAL APERTURE ENHANCEMENT

J.-P. FOUQUE* AND K. SOLNAT

Abstract. Time-reversal refocusing for waves propagating in inhomogeneous media have recently been
observed and studied experimentally in various contexts (ultrasound, underwater acoustics, ...), see for
instance [9]. Important potential applications have been proposed in various fields, for instance in imaging
or communication. However, the full mathematical analysis, meaning both modeling of the physical problem
and derivation of the time-reversal effect is a deep and complex problem. Two cases that have been considered
in depth recently corresponds to one dimensional media and the parabolic approximation regime where the
backscattering is negligible. In this paper we give a complete analysis of time-reversal of waves emanating
from a point source and propagating in a three dimensional randomly layered medium. The wave transmitted
through the random medium is recorded on a small time-reversal mirror and sent back into the medium,
time-reversed. Our analysis enables us to contrast the refocusing properties of a homogeneous medium and
a random medium. We show that random medium fluctuations actually enhances the spatial refocusing
around the initial source position. We consider a regime where the correlation length of the medium is
much smaller than the pulse width, which itself is much smaller than the distance of propagation. We derive
asymptotic formulas for the refocused pulse which we interpret in terms of an enhanced effective aperture.
This interpretation is in fact comparable to the super-resolution effect obtained in the other extreme regime
corresponding to the parabolic approximation. However, as we discuss, the mechanism that generates the
super-resolution is very different in these two extreme situations.

1. Introduction. In this paper we present a mathematical analysis of time-reversal in
the case with waves propagating through randomly layered media. The one dimensional case
where incoherent waves are time-reversed and sent back into the medium is well understood
in the regime of separation of scales, we refer to [8, 10, 11, 12, 15, 19]. In this paper we discuss
the three dimensional layered case where waves propagate from a point source. In Section 1.2
we describe in detail the physical problem that we will study, the time-reversal experiment for
acoustic waves in three dimensional randomly layered media. We summarize the important
separation of scales assumptions that we make in Section 1.3 following [1]. In Section 2
we derive an integral representation for the transmitted wave in terms of the transmission
coeflicients associated with the different wave modes. We briefly review in Section 3 the
description of the transmitted coherent field, known as the O’Doherty-Anstey theory [17],
studied in [6, 7, 13, 14, 16, 20]. Next, we describe the time-reversed and reflected wave and
derive the super-resolution effect that enhances the refocusing obtained in a homogeneous
medium which is constrained by the diffraction limit. Our precise analysis enables us to
explain the mechanism which produces this enhanced aperture and how it differs from the
one studied in the parabolic approximation regime in [4, 2, 18]. We discuss the comparison
between these mechanisms in Section 5.

1.1. Acoustic waves. We consider linear acoustic waves propagating in a three di-
mensional medium.
The equations for the velocity u and pressure p are:

Ou
1 0p _
Ko TV =0

with p being the density and K the bulk modulus. These two equations correspond
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respectively to conservation of momentum and mass. In the model problem that we consider
the medium parameters are heterogeneous in the slab 0 < z < L. We aim at describing waves
propagating in a strongly heterogeneous medium like in the earth’s crust. The fluctuations
in the medium are then very complicated and we cannot expect to know them pointwise,
however, we might be able to describe them statistically. Thus, we model the fluctuations of
the medium in terms of a centered stochastic process v that satisfies some mixing conditions
that are needed in the asymptotic analysis and which are reviewed in for instance [1]. The
typical example of such a process satisfying these mixing conditions will be an ergodic
Markovian process that decorrelates exponentially fast.

1 1 =(14v(z/e?) for z€]0,L]
K(x,z)_K(z)_{ % for z € (—00,0) U (L, 0)

p(x,2z) =p for all (x,2z).

Below we show how the statistics of the propagating wave field derives from the statistics of
v. Observe that we model the medium as being layered or laminated, it only varies in the
“depth” direction z. The random medium fluctuations are not small, they are O(1), and
the fluctuations take place on the microscale, conveniently denoted by €2, where ¢ is a small
parameter. In a number of physical problems the fluctuations in density is small compared
to the fluctuations in the bulk modulus and for simplicity we take here the density to be
constant. The general situation with fluctuations also in the density can be handled using a
modification of the approach presented below. A point source is located in the homogeneous
halfspace z < 0, we will give it explicitly in Section 2.

We are interested in how the medium fluctuations v affects the propagating pulse. Con-
sider first the case with a very long wave length for the propagating pulse, that is, a wave-
length on the order of the propagation distance of size L.

Effective medium theory as discussed in [1] shows that then, to leading order, the wave
propagates as if it where in an averaged or effective medium. The effective medium corre-
sponds to replacing the reciprocal of the bulk modulus by its average value, 1/K, and also
the density by its average value, which in this case is the constant density p. Thus, we have
centered the random medium fluctuations such that the pulse impinging from the halfspace
z < 0 propagates as in a homogeneous medium and it is not affected by the random fluc-
tuations v. The parameters of the homogeneous halfspace matches those of the effective
medium. However, if the wave length is short compared to the traveling distance then the
random fluctuations v will strongly affect the wave, this is the regime we consider here.
More precisely we carry out our asymptotic analysis in the regime where the characteristic
wavelength is O(¢), which is long compared to €2, the spatial scale of the random medium
fluctuations are short compared to the distance of propagation, L, that we take to be O(1).

1.2. Time-reversal model problem. We describe the time-reversal model problem
that we will analyze. The problem is illustrated in Figure 1.1 and involves the steps:

1. A point source is located in the halfspace z < 0 and generates an acoustic pulse
that is impinging on the heterogeneous slab 0 < z < L. The spatial width of the
wave front that emanates from the source is small and O(e). The wave field is
subject to multiple scattering before it hits the time-reversal mirror, TRM, where
it is recorded within a specific time window. Note that the TRM does not act as
a usual mirror or strong reflector, but in a way that we now explain. We choose a
narrow time window, of width O(g), and located such that it records the wave front
when it arrives at the TRM. We show below that this arrival time in the random
case is approximately given by the arrival time in the effective medium. The spatial
extent of the TRM in the transverse coordinates x is also chosen to be O(e).
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2.

The pressure pulse that is captured in the given time window is reversed in time
before it is re-emitted from the mirror and propagates toward the original source
point. This means that the part of the signal that arrives last is re-emitted first.
Finally, we observe the wave front when it arrives back at the hyperplane z = 0
containing the original source point. The main issue we want to address is the spatial
support of this re-propagated wave. If the TRM had recorded the transmitted wave
for a long time and on a large spatial segment then the repropagated wave would
be tightly focused at the original source point. Here, we consider the case with
a small window, a small aperture, (¢/L), and we examine whether and how the
repropagated wave focuses at the original source point. A key aspect in algorithms
exploiting the time-reversal technique is exactly such tight re-focusing of the wave
energy.

1.3. Summary of scales. Before we start the analysis of the problem we summarize
the important scaling assumptions.

The distance from the source point to the mirror is L = O(1).

The magnitude of the random medium fluctuations are not small, they are O(1).
The spatial scale at which the medium fluctuates is very small O(g?).

The central wave length of the signal is small O(g). Note that this is a scale in
between the macro scale, O(L), and the micro scale, O(g?).

The TRM is supported on the scale O(¢) in space and captures the wave front in a

short time interval of width O(e). .

.?

PR

L
Fic. 1.1. Setup

2. The transmitted signal.

2.1. Plane wave representation. The analysis of the wave propagation problem
described above is greatly simplified by the fact that the medium only varies in the depth
z direction. It means that we can decompose the wave field into plane wave components
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and analyze the propagation of each of these separately. Consider first a plane wave that
is moving in the z direction in the homogeneous or effective medium with speed ¢ and a
characteristic wave-length O(g), its pressure denoted by ppom has the Fourier domain integral
representation:

gtz 1 [ ciwe—zsoe f
phom(t;x, Z) - f ( € ) - 27'[' /6 f(w)dw
— i e—iwt/sf(w)eiwz/(sé)dw

2w

where the Fourier transform of the pulse shape is
fw) = [ e sisas

Consider next a plane wave that, relative to the spatial coordinates (z1, 22, 2), is moving in
the direction of the unit vector:

(ck, /1 — k2¢2)

with the lateral slowness vector being
k = (k1, ko)
and we denoted
(2.1) K> =k} + k3.
This oblique plane wave, propagating in the homogeneous medium, has the representation

1

i —iw(t—k-x)/e f iwz/(ee(k))
5 | € flwe dw

(2.2)

with the mode dependent speed in the z-direction being
c
V1I=—g2&

We now exploit the fact that the medium does not depend on the transversal space variable
x and decompose the problem into a family of problems involving such wave modes. First
we eliminate the horizontal components of the velocity from (1.1)

(2.3) é(k) =

Ou  Op
(24) pa + & =
1 &% 1(8% 0% *u

(2:5) Ko 5 (37 * 57) a0t "

with u being the velocity component in the z direction. It is convenient to take a joint
Fourier transform in time and the lateral spatial dimensions (z1, z2). This joint transform
decomposes the waves into plane wave modes according to (2.2):

0 (w, k, 2) = ///ei%(t_k'x)u(t,x,z) dt dx
©(w,k, 2) /// i2t-kx)pt x, 2) dt dx.



The inverse transform then becomes for instance for the pressure

P = g [ [ [ € st

Observe the presence of the factor w? in this Fourier inverse due to our specific choice of
Fourier variables. From (2.4) we obtain

iw_..  0p°
Epu + 8z

iw (1 k*\ .. 04°

— == ) - =0

e \K(z) p 0z
after factoring out an iw in the second equation. Below we assume that the source is given
such that we only need to consider non-evanescent modes corresponding to lateral slownesses
(defined in (2.1)) satisfying k < C' < 1/¢ for some constant C. The speed of the modes are

given by (2.3) and the travel time for mode k from the origin to depth z depends only on
the lateral slowness x = [k|, it is

0

7(2,k) = z/e(k).

Similarly we define now the mode acoustic impedance by
I(k) = pe(k).

With these definitions the equations for $° and 4° can be written in the form

iw_..  0p°

(2.6) —_pu + % =0
iw 1 é(k)? o\ e | O

~ ) <1+ 2 v(z/e®) ) p° + 5% =0.

This shows that mode by mode the problem is a one-dimensional wave propagation problem.
In fact, with « fixed, this corresponds to a one dimensional wave propagation problem with
density p and with the random mode dependent bulk modulus given by:

(2.7) K;l= ﬁ (1 + E(;)2V(z/e2)) .

This is seen by performing a Fourier transform in time of the one-dimensional version of (1.1).
We have therefore simplified the problem to a family of one-dimensional wave propagation
problems.

2.2. One-dimensional mode problems. We now generalize the decomposition into
right and left going waves to the non-homogeneous case. We decompose the solution of (2.6)
into right and left going wave components for each plane wave mode by setting

R j(ﬂ) <& iwz/ee(k) je_—iwz/ee(k)
(28) b = —2 <a e — be )
(2.9) Q€ = 1_ (éseiwz/aé(n) + Bae—imz/sa(n)) 7
2/I(k)

where @ and b° are unknown functions of w, k and z. Outside the random slab this is an
exact decomposition in the sense that these functions do not vary with z. We shall retain
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this decomposition also in the slab z € (0, L) since it provides a centering with respect to
the effective medium wave speed. We assume that a wave is impinging on the random slab
from the left, giving the following boundary condition at z = 0:

(2.10) af(w, k,0) = e2d(w, k).

We assume moreover that there is no energy coming in from the homogeneous halfspace
z > L, which gives the second boundary condition at z = L:

(2.11) b*(w,k,L) = 0.

The first condition gives in the Fourier domain the waves coming in from the homogeneous
left halfspace z < 0. The particular form of ¢ depends on the particular choice of the physical
source. For instance if ¢ is given by a pointmass at the mode ko then the boundary condition
corresponds to a time pulse oblique plane wave as above. The problem then reduces to a
single one-dimensional problem of the type (2.6). In the following we consider more general
functions ¢ which correspond to directed point sources, however, the particular form of ¢ is
not important in our analysis. The multiplicative factor €2 derives from the fact that this
is the particular scaling of the source magnitude that makes our quantity of interest O(1).
Since the problem is linear this choice is however not important.

When we substitute the expressions (2.8) and (2.9) in (2.6) we get the following equations
for the centered and transformed waves:

d a B iw ) 1 _6721':‘)2/56
(2.12) 7 [ i ] = 2ec(r) v (2/€7) [ et2iwz/ec -1

where we defined

(Sl el

ve(z/e?) = (@)2,/@/52)_

Since the problem that we consider is a two point boundary value problem, rather than an
initial value problem, we now introduce the propagators that satisfy:

d

(2.13) e

1
Pl (0, 2) = gH(WQ) (2/6,1/,9(2/82)) P; .(0,2)
{w,)(0,0) =L
Observe that the propagator depends on the mode k only through x = \/k? + k2. The

matrix H depends on the fast variable z/e through the phases and on the even faster
variable z/e2 through the randomness v:

) 1 _e—2iwz/6(n)
H(w,n)(zayﬁ) = %Vn [ e+2iwz/é(n) -1 :
From (2.13) it follows that we can express the propagator in the form:

oz, (0.L) B, . (0,I) ]

P, .(0,L) =
~0.1) l Bry(0.D) a0 (0.1)

(wan) (“’5")
Since the trace of H is zero it also follows that

(2.14) o5 |* = 1517 = 1.
6



The transmitted right going wave is defined in terms of the harmonic amplitude & which
solves:

rooto[ 53] [

therefore

e’d(w, k)

(w K) (0 L)

(2.15) a(w,k, L) =

Using (2.14) we derive the important energy conservation relation:
(2.16) ja(w, k, L)[* + [b(w, k, 0)|* = |*$(w, k)|,

which in particular implies that the transmission coefficient 1/ o, n)(O,L) is uniformly
bounded by one.

2.3. Integral representation for the transmitted wave. We now look at the right
propagating transmitted wave within a time window centered at time ¢, and on the ¢ scale,
that is, A(tg + €0, %, L). By Fourier inverse this quantity is given by

(2.17) A( to +e0,x%x,L)
/// —i2 (to+eo—k-x—L/&(k)) » (w k L) 2dkdw
27T8

The expression (2.15) for the transmitted front wave mode gives then the following integral
representation for the transmitted right-propagated wave component:

(2.18) A( to +e0,x,L)

—i2(to+eo—k-x—L/(k)) 27 w,k wzdkdw.
wrl /] Foan i)

Note that the corresponding expression for the pressure follows upon a scaling by \/I(k)/2
as can be easily seen from (2.8).

3. Review of O’Doherty-Anstey theory. Our objective is to understand time-
reversal of transmitted waves. It is therefore essential to have a precise description of the
transmitted wave front. We review here the theory that describes this front. The main
result, the O’Doherty-Anstey formula, is presented in Section 3.3. Convergence of finite di-
mensional distributions for the front wave is derived in Section 3.1 using a moment argument
as detailed in [7].

3.1. Characterization of moments. From the integral expression (2.18) we see that
the transmission coefficients defined as 1/ afw’n)(O, L) determine the transmitted wave field.
From the energy-conservation (2.16) it follows that the modulus of this coefficient is bounded
by one. It is important to note that the distribution of the wave in time and space depends
on the joint distribution of the transformed wave over all frequencies w and lateral wave-
vectors k. We next illustrate that knowledge of the joint moments of the transmitted wave
for all finite combination of different frequencies and wave-vectors is enough to characterize
the distribution of the transmitted wave in time and space. A convenient way to characterize
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the finite dimensional distributions of the scalar wave is to compute the joint moments of
order my,---,My:

E[A(to; + EUl,Xl,L)ml ce A(toin =+ SUn,Xn,L)m"],

which can be written in an integral form with respect to the variables wj;,k;;, 1 <1 <
n, 1 < .7 <my:

(27r5)(3m)/ /e Hm
X (E2m H&(wj,hkj,l)) Hw?,ldkj,ldwj,l;

where we defined

n=3m
=1
01 = 0(to, Kju, %1) = tog — kju - %1 — L/e(k;1)
and the sum and products are taken over all the distinct frequencies and wave-vectors.
Therefore, we are led to study the joint distribution of the transmission coefficients
1

m T(wa,n])(o L)

for a finite number of frequencies and wave vectors. We now relabel these by w1, -, wmn
and ky,---,ky,. First, consider the situation with the phase 6;; = 0. Then, if we can
characterize the limits

(3.1) lim I [wam)(o, L)---T¢,, O, L)]

of all these finite dimensional problems we would have characterized all the finite dimensional
distributions of the transmitted wave front in space and time. It is shown in [7] for the one
dimensional case and in [6] for the three dimensional layered case that the limit (3.1) is

(3.2) I [Tiar ) (0, L) -+ T (0, L)]

where the coefficients T7s are solutions of the system of stochastic differential equations:

Vi, VALT
3.3 dT,.. » =—w2'_73 wi Az Fiw;——2= Ty o dW
(3.3) (wsmi) = =5 55077 Tlwsm) EPRW, Ty ) AW (2)

driven by a single standard Brownian motion W (z) and where the coefficient ~,; is given by

(3-4) Ve = /0 B E[v,.(0)v.(s)]ds = (@)47

and

y = /0 ~ B (0)(s)]ds.
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The technique for deriving this result entail writing an expression for the multidimensional
propagator that is associated with the frequencies and wave vectors (wj, k;). It satisfies an
equation that generalizes the one in (2.13) for a single w, k. Using a diffusion approximation
result one can show that this multidimensional propagator converges in distribution to the
solution of a multidimensional linear stochastic differential equation. Using Ito calculus one
then derives stochastic differential equations that characterized the limiting transmission
coefficients. One then takes expectations of the products of such coefficients and deduces
that the limit is given by (3.2). Equation (3.3) admits the following explicit solution:

ﬁ _w2 Tr
E(m)ﬁW(L) 46(&)2L)’

as can be easily checked by applying Ito’s formula. Therefore, if we substitute 1/a° for T in
(2.18) we obtain a characterization of the distribution for the wave front. This substitution
leads to the correct asymptotic limit expression for the front also in the case with a fast
phase, that is, when 6;; is non-zero. The small ¢ limit for the front is then obtained via a
subsequent stationary phase argument, [6, 20], which gives the limit

(3.5) T(w,r)(0,L) = exp (iw

(3.6) d(a, X, L) = (Sp) li_r>I[1) A(to + EJ,X,L)
1>
= (sp) lim 1 —iwo _iw_“’(*o,k,x)j_, (0, L) (. K)o dd
=P e—0 (27r)35 € € (w,k)\Ys w, K)w w.

Observe that this integral expression has the exact scaling required for computing a two
dimensional stationary phase limit and we compute this limit in the next section.

3.2. Stationary phase. The main contribution to the integral expression (3.6) occurs
at the stationary point that solves:

L9 (L

—4L1 T 57 —7 N\ —

_ Ok \ (k) | —m + Lke(k) | _

Al I A0 A [ 25 + Lhye(r) | = °
> Bk, \e(k)

which follows from (8.4.44) in [3]. It follows that the stationary lateral wave-vector, kp,
solves

é(h:sp)x 1-— Eﬂgpx
(3.7) k., = =V

L cL

where we have used (2.3) and defined

K2, = k2,1 +

sp, sp,2°

Solving (3.7) for k2, we find

2r2 = |x|?
T xR+ L2
We now substitute this explicit expression for é2f<a§p into (3.7) to find the stationary point:

X

kop(x) = m
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We next substitute x2, in (3.4) and obtain

Trer = 11— K2 22 )’
sp

Finally, the value of the phase at the stationary point is given by

/1x|2 + L2
o(tO;ksp;x) =ty — |x|7+

— )
c

and we choose tg to cancel it:
NEES%
to = ————.
¢
This corresponds to choosing tg to be the travel time from the source point at the origin to
the point of observation (x, L) under the constant effective medium sound speed ¢. We also

have
2
e _ 7 <1+ x| )
C(Ksp)? 2 L2

and upon substitution in (3.5) we find

7 _ vai IXI2 2 [x*
T(w,nsp>(07L)—eXp< w75 1+ = W(L) - =\t 7))

3.3. O’Doherty-Anstey formula. We have used the diffusion approximation limit
to obtain a joint description of the plane wave modes and we next derive a simple explicit
formula for the limit of the transmitted wave using the method of stationary phase. Applying
the stationary phase result to (3.6) we find

a(o, %, L)

1x/2

|x\ —w? 2 (1+ )L .
_ — 1 L Pl = )L,
o gt T Wl w ) iwd(w, kep)dw.

87r202\/|x|2 + L2 /

The corresponding limit expression for the transmitted front dg in a constant medium is
obtained by evaluating the above expression for v = 0, we then find

—two

iwp(w, kep)dw

do(o,x,L) =

1
8r2a2\/Ix? + L2 /

This, then gives
THEOREM 3.1. In probability distribution the following characterization of the trans-
mitted wave process holds

/X2 + L2
lim A (L + 6U,X,L> = a(o,x, L),
c

e—0

where

&(U,X,L) = [&0(-,X,L) *ND(L,X)] (U - a(va))
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and we denote

2 _ |x[*
()
3.9 0rx) = W (L
(3.9) oy = e WD)
Np(s) = L e /2D,
\V2wD

This result follows from the computations presented in sections 3.1 and 3.2 in the same
manner as in [7] (one-dimensional case) and [6] (stationary phase limit). Observe that for
L fixed only the random variable W (L) is needed to characterize the probability distribu-
tion of the random field a(o, x, L). Recall that W(L) is a Gaussian random variable with
mean zero and variance L. Note therefore that the shape of the front wave is given by the
deterministic quantity

6’0('7 X, L) * ND(L,X) :

This corresponds to a ‘diffusion’ in time or a smearing of the transmitted wave process via a
convolution with the Gaussian function. This is often referred to as stabilization of the front
and has also been obtained in [14, 20]. In the derivation presented there the shift by the
Brownian motion W (L) is handled by centering the front with respect to a random travel
time. Thus, the front is observed in a frame that is random and depends on the particular
realization of the random medium.

4. Time-reversal of transmitted front. We have discussed and characterized pre-
cisely the transmitted wave front and we can now start the mathematical analysis of the
time-reversal problem that we presented in detail in Section 1.2. The time-reversal mirror
(TRM) is defined by its support function in time and space. The time window on the € scale
is denoted by G1(o) and the spatial extent in the € scale by Ga(x'),

G(0,x") = G1(0)Ga(X").
This means that the signal recorded at the TRM is given by
y(o,x") = A(ty + eo,ex’, L)G1(0)G2(x")

where we have evaluated the transmitted field on the ¢ scale in time and space. Observe that
this corresponds to looking at the transmitted signal on the micro or € scale in a window
centered at the time tp and around the position (x = 0,z = L). We find below that the
appropriate choice for ¢) is simply ¢, = L/¢. This is a consequence of locating the TRM in
an e-neighborhood of x = 0. In practice the TRM will be located in a neighborhood of some
offset xq this introduces a modification that we discuss in Section 4.6.

4.1. Time-reversed signal at the mirror. The time-reversed signal at the mirror is
on the e-scale given by

P(o,x') = y(—o,x') = A(ty — e0,ex', L)G1(—0)Ga(X').

In order to obtain a convenient integral expression for the wave field propagated back in the
medium and evaluated at the original source plane we compute the specific Fourier transform
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of the new source defined by .

P (w, k) = / / / kX At — eg,ex', L)Gy1(—0)Ga(x)dodx’

[ [ ] e meamn

x¢(w’ K)ei s (to—L/e(' )) wW2dK' du' }Gl(—a)GQ(x')dadx'

) {/ e U)Gl dU // ilwktwk)x Gz(x’)dx'}

L/c(li )) Ideldw

i, /// SOk A

(4_1) xGl(w _ w/) //e—i(wk+w'k )-x’ Gg(x')dx'ei ( —L/e(x' ) W2 dk'dw'

where we used the fact that A is real.

4.2. The diffracted field. We observe the backpropagated or diffracted field at the
plane z = 0, at the offset x, and at the time ¢; + 0. This is our quantity of interest which
we denote by S§ and it is obtained by applying (2.18) to the new source ¢ given by (4.1):

—1%2(t14eo—-k-x—L/e(k
St (t1 +€0,x) 27re /// el /())T( (L, 0)
X {s2¢5(w,k)}w2dkdw

where T¢,  ,(L,0) is the transmission coefficient from z = L to z = 0. Observe that we

(w,k)
re-scale the new source by the multiplicative factor 2 as in (2.18). This scaling takes into
account the size of the TRM and is chosen such that our quantity of interest become O(1).
Using the definition of the propagator in (2.13) we find that the transmission coefficient
T(, ) (L, 0) satisfies

P(u,x)(0,L) [ T(Z,N)O(L 0 ] [ {w, n)( 0) ]

and therefore is given by

T(Ew,n)(LJO) = T(Ew,n)(OJL)'

After replacing 1&5 (w, k) by its integral representation (4.1) we find

t1 +€0,X
/ / i i (t1—kex— L /2(R)) i (kx) i< (F— L /2(x"))
277 (27)6e2
Xp(w' k') Gy (w —w') T(ur oy (0, L) T(, (0, L)
% {//e—i(wk+w’kl)~x’G2(Xl)dxl}w12w2dkldwl dkdw.
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A moment argument similar to the one given in Section 3.1 shows that the diffusion approxi-
mation limit is obtained by replacing the transmission coefficients T by their corresponding
coefficients T' given explicitly in (3.5). It then remains to apply the stationary phase result
to

hm S5 (t1 +e0,x

(Sp 11 ! 2 52/ / —iwo —i2 (1 — kx—L/E(n))ei“’Tl(tgfL/E(n’))
e— 7T

. Ay 2 Y, Nar
X¢ w, k, Gl(w w,)e iw’ o ’)fW(L) w mLezw,( )fW(L) w TEL

{ / / —iwktek') x Gz(x')dx'}w%?dk'dw' dkdw.

In the same manner as in Section 3.6 we can now apply the stationary phase theorem with
respect to the two phases t; —k - x — L/¢(k) and t;, — L/¢(k'). They give respectively the
stationary points kgp(x) = x/¢y/|x|? + L? and kj, = 0. The corresponding “stationary
phase times” are t(1 ,p) = y/[x|? + L2/¢ and t(gsp) = L/c. We denote the limiting field by
sr, and find

(4.2) sz (0,x) = lim S§(t(1,sp) + €0, %)
e—0 ?

5 (w _ w/)e*i(w'G(L,o)*we(L,x))

-1 -
e " P(w',0) G
1674 Ly/[x? + L? // #w'>0) G

12 2 2 2 A
xe ¥ DPr.oe ¥ D(L,x)GQ(—wkSp)ww'dwdw'.

where we used the definitions (3.8) and (3.9) for quantities D? and 6.

4.3. Focusing functionals. If the TRM had covered the whole plane z = L then the
backpropagated wave would refocus tightly at the original source point, that is, si(c,x)
would be supported near x = 0. If the mirror is very small, as in our scaling, the refocusing
becomes poor in the deterministic case. The fascinating phenomenon that we discuss next
is that the random medium fluctuations give a refocused pulse also in the case with a very
small aperture or spatial support of the TRM.

We now write the diffracted field (4.2) in terms of an integral of the initial time pulse
by introducing a focusing functional (s, x; 0, L):

(4.3) / 6 (s 47T / / i 00) G (0 — ) Oy (—ekp)

{ —i(w'0(2,0)~w0(z,%)) g ='* Di1,0) o= DiL ) } ww' dwde'ds
C
== [ 6@ Hexi0,1)ds

with C' = 1/(4n%¢'L), r?> = |x|? + L? and where the time pulse ¢ is given by
8(5) = o [ 3 0)e d
s) = o w',0)e s.
In the deterministic case the term in the curly brackets in (4.3) is identically equal to one. In

the random case this term plays a crucial role, it will enhance the decay in x of the focusing
13



functional H. Note that if we denote by #H the focusing functional in the deterministic case
by

-1 o = T"a
Ho(S,X;U, L) = W //e_z(w S+MU)G1(OJ - w’)Gg(—wksp)ww'dwdw'

then in the random case it is given by
H(SJ X;0, L) = 7_{0(5 + 0(L,O)7 X;0 — a(L,x))a L) *s ND(L,O) *g -/\/D(L,x)

where we differentiate between the commuting convolutions with respect to s and o There-
fore, the effect of the randomness in the medium can be described as introducing a new
or effective focusing functional. It is obtained from the one in the deterministic case by
convolution with deterministic Gaussian functions with respect to the time arguments and
random shifts 01, x) and 61 o) in these arguments. As we show below, the fact that one of
the Gaussian functions in the convolution has a |x| dependent width will give the focusing
enhancement. By making the change of variables © = w — w' and integrating with respect
to @ we find

1

T o

. 212
X {e"“’(a(L’O)_eu’x))e*“’ Diwx } wdw *, /\/D(L 0"

H(s,x;0,L) / e~ ) [—iGY (s + 0(1.0)) — wG1 (5 + 0(1.0))] G2(~wksp)

For simplicity we assume here that the mirror function Ga(x) is rotationally invariant and
relabel it G(]x|). When we then carry out the w integration we find

0 0?
H(S,X;O’, L) = |:G11(8 + Q(L’O))g + Gl (S + Q(L’O))@]

—v 1
x /G2 ( ) _ND(L,x> (s +0 401,00 = Or,x) — v)dv %, ND(L,O)'
sp

sp K

Therefore, the random fluctuations in the medium corresponds to:
(i) An effective enhancement of the spatial support of Gy through convolution with a
Gaussian with variance given in (3.8).
(ii) A random displacement of the TRM given by

s = By — By = YL L
(4.4) 0(L,x) = Q(L’x) H(L,O) = &3 1+ T2 1| W(L)
where we have used (3.9).

4.4. Effective aperture. To obtain a more explicit characterization of the focusing
we consider the case with the mirror being Gaussian in space and the identity in time:

Gl (8) =1
G2 (v) = Na(v),

where the positive parameter a gives the size of the mirror (in the £ scale). Then we find

62NA(L,x) (s + 0o — 9_(L7x))

H(s,x;0,L) = 557
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with Az x) being defined by

4.5 A2 =2 a2+ D2 D2 — k2 g2 L 9 @
( - ) (Lx) — 'ispa + (L,x) + (L,0) — 'ispa + 282 + 12 -
We write this as
2 _ 1L 2 2
(46) A(L,x) = = 6_2 + I‘Espaeff

where we defined the x dependent effective aperture, or more precisely the effective sice
of the mirror G2, by

2 2, VL x>
= —_— 1 .
ey a” + 2 ( + 12
From (4.3 we find that the wave field on the source plane is characterized by

C 6?

51(0:%) = 3 52

/¢ (5) NA(L,x) (S +o— 5(L,x))ds.

Finally, it is convenient to consider the case with a Gaussian source pulse ¢(s) with standard
deviation denoted by T'. In this case we define

(4.7) Atp ) = T% + Al ),

and write

SL(UJ X) = 7@-/\/5(“) (0 - 9(L,x)) .

We look at the diffracted field at a given time, say a “snap-shot” at ¢ = 0, and by a simple
explicit calculation we find

¢ 1 Q?L x) 0%, /A2
(4.8) s50(0,x) = ——or— (—1 4+ —= e iz /AL,
LY 27TA?L,X) %L,x)

The diffraction field in the homogeneous case is obtained by letting v = 0. It is given
explicitly by:

-C
r2m(T? + /ﬁzgpa2)3/2-

Recall that

b
e
r? = |x|2 + L2,

so that for large offsets |x| the amplitude of the diffracted field decays as 1/r, that is as
1/|x| for L fixed. This slow decay reflects the smallness of the mirror, it corresponds to the
diffraction limit with the mirror effectively having point support in space. We contrast this
decay with the decay in the random case when the diffracted field is given by (4.8). Observe
that for |x| large we have

e WP
(49) 0(2L,x)/A%L,x) ~ I
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which, in distribution, is the square of a standardized Gaussian random variable. The
main difference from the homogeneous case is that in the random case (with v > 0) A( L)
is O(|x|), and not O(1). Therefore, from (4.8), we find that the diffracted field decays
as 1/|x|*. Thus, we can conclude that in this sense the random medium gives a better
refocusing (or “beats the diffraction limit”).

4.5. Numerical illustration. From (4.8) and (4.9) we see that upon a normalization

by the factor
72
c_L ( L T ) /Al

rver | Al

the term A(f ) characterizes the lateral decay or the focusing of the diffracted field sz (0, x).

It is convenient to rewrite A%L’x) in terms of nondimensionalized variables. From (4.6) and
(4.7) we find:

2|42 2
A2 _ 2 a’|x?| L x|
Awx =T (1 + r2g2T2 + 28272 (2 + 7.2 .

We now introduce the wavelength A = €I" and we define the nondimensionalized variables

o
_A’ _L’ ry_

~vL
2327
These quantities correspond respectively to the relative magnitudes of the aperture, the

offset and the medium fluctuations. In terms of these variables the quantity of interest

A(fx) can be written

72

) =T3 [ 1+ a2 — 52+ 22) ) .
F(z;a,9) ( +a 1+J~c2+’y( +x)>

In order to compare the diffracted fields in the homogeneous and random cases we normalize
F by its value at the origin. In Figure 4.1 we plot

F(%;a,7)
F(0;

| o
2|

)
)
for various parameter values.
e In the top plot we show the case with a narrow aperture, @ = 1/100. The dotted,
dashed and solid lines corresponds respectively to the deterministic, weak noise
(% = 1/100) and strong noise (¥ = 100) cases. The dotted line shows that in the
deterministic case there is no spatial focusing relative to the geometrical spreading
of the deterministic medium, the mirror acts as a point source. However, random
modulation in the medium creates focusing since wave energy ‘traveling obliquely’
relative to the layering is spread out relatively more due to the scattering.
e In the bottom plot we show the case with a wide aperture, with @ = 100. In this
case we have focusing also in the deterministic case, however, for large lateral offset
the amplitude is still damped dramatically more in the random cases.

4.6. Generalization to the off-axis mirror case. The motivation for this gener-
alization is that in the context of applications to imaging, the mirror might be located off
the axis of the source. We find that the decay of wave energy with respect to the mirror
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F1c. 4.1. In this figures the dotted, dashed and solid lines correspond respectively to the homogeneous,
weak noise and strong noise cases. The lines plot the relative focusing of the diffracted field as a function of
the offset. The top figure illustrates the case with a narrow aperture where there is no focusing relative to the
point source case for the homogeneous medium, while even in this regime randomness creates focusing. The
bottom figure illustrates the case with a wide aperture where there is some focusing even in the homogeneous
case. Note that in both cases the randomness in the medium improves the decay of the diffracted field.

off-axis displacement is faster in the random case than in the homogeneous case. In this
sense randomness improves the resolution in the source location problem.

We position the mirror off the axis of the source at the location (d,L). This means
simply that we shift the mirror function G5. In Section 4 G2(x') is therefore replaced by
G2(x' — d/e) since G is defined relative to the e scale and the displacement of the mirror
is O(1). When we make this modification and repeat the calculations in Section 4 we find
that the diffracted field in (4.2) becomes:

-1 ) _ _

SLATX) = e “P(w',0) Gy (w—w'
L( ) 1677454\/L2 + |d|2 \/'X — d|2 + 12 // ¢( ) 1( )
Xeﬂ‘(wlo@’d)7“0@”‘—‘*))6_“'20&@)e“”2D<2L,x_d)G‘z(—wksp — W'kl Jww' dwdw'.
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where the modified stationary points are defined by

x—d
cy/(x —d)? + L?
K= 4
ooe/A2+ L2
Note that the times have been evaluated according to the stationary points as before. Fol-

lowing the analysis of Section 4.3 we find that the main effect of randomness is captured by
the Gaussian exponentials

kp =

2 2 212
e~ " Dir,a) = DiL x—a)

which create fast decay with respect to the off-axis displacement |d|.

5. Comments and conclusions. We have considered the phenomenon of super-
resolution in the context of waves propagating from a point source in a randomly layered
medium. In the regime of separation of scales we have obtained a precise description of
the transmitted coherent field and also of the time reversed and backpropagated field, that
is, the diffracted field. Our main interest has been in characterizing the spatial focusing
properties of this diffracted field. We have shown that randomness improve the focusing.
The reason for this improvement is a spreading in time of the coherent field. This spreading
increases with the lateral offset from the source point. Observe that this is the mechanism
that generates super-resolution, rather than multi-pathing effect, which is essential in the
regime corresponding to the parabolic wave approximation, [4, 18]. In the layered case the
random fluctuations in the medium creates randomness in the travel time of the coherent
field and the main effect of time-reversal is to compensate for this random time shift. This
is in contrast with the parabolic approximation regime where time-reversal is crucial in the
refocusing enhancement.

In this paper we have considered only the coherent part of the wave field. In the regime
that we consider with layered medium fluctuations strong incoherent wave components are
generated by the scattering. These wave fluctuations can be observed in the coda of the
transmitted field or in the incoherent reflected waves, this has been analyzed in [1]. Time-
reversal of such incoherent waves is a very interesting problem. For the reflected field this
has been considered in [8, 15, 19]. For applications to imaging and communication time-
reversal of the transmitted incoherent field is important. The one-dimensional case with
dispersive waves is studied in [10]. The general three dimensional layered case is the topic
of a forthcoming paper.
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